Remarks on Complemented Subspaces of Von-neumann Algebras*
نویسنده
چکیده
In this note we include two remarks about bounded (not necessarily contractive) linear projections on a von Neumann-algebra. We show that if M is a von Neumann-subalgebra of B(H) which is complemented in B(H) and isomorphic to M ⊗ M then M is injective (or equivalently M is contractively complemented). We do not know how to get rid of the second assumption on M. In the second part,we show that any complemented reflexive subspace of a C *-algebra is necessarily linearly isomorphic to a Hilbert space.
منابع مشابه
A Characterization of Completely 1-complemented Subspaces of Noncommutative L1-spaces
A ternary ring of operators is an “off-diagonal corner” of a C∗-algebra and the predual of a ternary ring of operators (if it exists) is of the form pR∗q for some von Neumann algebra R and projections p and q in R. In this paper, we prove that a subspace of the predual of a ternary ring of operators is completely 1-complemented if and only if it is completely isometrically isomorphic to the pre...
متن کاملWeak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups
Let S be a locally compact foundation semigroup with identity and be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of In this paper, we prove that X is invariantly complemented in if and only if the left ideal of has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...
متن کاملVarious topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملReiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras
متن کامل
Nonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992